

Student ID card Barcode

Recognition for

Android Mobile Phone

Design Manual

Student Name: Long Long

Student ID: C00131028

Supervisor: Christophe Meudec

Date: 18 Jan 2010

http://glasnost.itcarlow.ie/~meudecc/index.html

Table of Contents

1. Introduction ... 3

2. Design Theory .. 4

3 Application Design .. 5

3.1 Graphic User Interface ... 5

3.1.1 Capture UI: .. 5

3.1.2 Result and Connect to Web server UI ... 6

3.1.3 Details display UI ... 6

3.1.4 Menu ... 7

3.2 Use Case Diagram & Use Cases .. 8

3.2.1 Use Case 1 ... 8

3.2.2 Use Case 2 ... 9

3.2.3 Use Case 3 ... 9

3.2.4 Use Case 4 ... 10

3.3 Domain Model ... 11

3.4 System Sequence Diagram ... 13

3.4.1 SSD for Scans barcode(Use case 1) ... 13

3.4.2 SSD for Transfers result to Web Server(Use case 2)............................ 13

3.4.3 SSD for Transfers details to Mobile(Use case 3).................................. 14

3.4.4 SSD for Displays details(Use case 4) .. 14

3.5 Class Diagram & Classes ... 15

3.5.1 CaptureActivity.. 16

3.5.2 CaptureActivityHandler... 16

3.5.3 CameraManager.. 16

3.5.4 BarcodeDetector ... 16

3.5.5 BarcodeProcessor ... 16

3.5.6 BarcodeSplitter.. 17

3.5.7 BarcodeDecoder.. 17

3.5.8 Result... 17

3.5.9 Client ... 17

3.6 Interactions of Main Use Cases.. 18

3.6.1 Use Case 1: Scans barcode .. 18

3.6.2 Use Case 2: Transfers result to Server... 20

4 Web Server Design .. 21

4.1 Dummy Database Table ... 21

4.2 Web-based Database Manager.. 21

5. Reference ... 22

1. Introduction

This Mobile Barcode Recognition(MBR) is an Android platform application which

focuses on 1D barcode(Code 39) image processing. The aim of it is to develop an

application using built-in camera on mobile phones to process and decode barcodes
on the device locally.

Once it reads the barcode on student card and decodes it successfully, an option to

get detail information of the card holder from web server via network is available for

users. For some security reasons, we cannot access college student database or its
relevant web server, an analogical web server and student database is including in

this project. So instead of connecting to college web server for details of card holders,

the application(MBR) will connect to the analogical web server which is also a part of

the whole project.

This MBR application is a foreground activity. That means it ’s only useful when it’s in

the foreground and is effectively suspended when it’s not visible. The Activity life

cycle needs to be considered carefully so that the Activity switches seamlessly

between the foreground and the background. To achieve this goal, state of the

application needs to be saved when the Activity becomes invisible. When returns to

the foreground, it presents the exact same state. Additionally, “games and map

mashups are common examples”.[1]

There are two parts in the domain, one is the local MBR application and the other

one is web server. As the major work of the project is building application on Android,
the web server design will be less detailed in this manual and it ’s no more than a

general web server as those now running and working with databases.

2. Design Theory

It’s seriously necessary to follow these guidelines during Android software design:

Well behaved
“Start by ensuring that your Activities suspend when they’re not in the foreground.

Android triggers event handlers when your Activity is suspended or resumed so you

can pause UI updates and network lookups when your application isn’t visible —

there’s no point updating your UI if no one can see it. If you need to continue

updating or processing in the background, Android provides a Service class designed
to run in the background without the UI overheads.” [2]

Switches seamlessly from the background to the foreground

“With the multitasking nature of mobile devices, it’s very likely that your applications

will regularly switch into and out of the background. When this happens, it’s

important that they “come to life” quickly and seamlessly. Android’s

nondeterministic process management means that if your application is in the

background, there’s every chance it will get killed to free up resources. This should

be invisible to the user. You can ensure this by saving the application state and

queuing updates so that your users don’t notice a difference between restarting and

resuming your application. Switching back to it should be seamless with users being

shown the exact UI and application state they last saw.”[2]

Polite to other activities

“Your application should never steal focus or interrupt a user’s current activity. Use
Notifi cations and Toasts (detailed in Chapter 8) instead to inform or remind users

that their attention is requested if your application isn’t in the foreground. There are

several ways for mobile devices to alert users. For example, when a call is coming in,

your phone rings; when you have unread messages, the LED fl ashes; and when you

have new voice mail, a small “mail” icon appears in your status bar. All these
techniques and more are available through the notifi - cation mechanism.”[2]

Presents a consistent user interface

“Your application is likely to be one of several in use at any time, so it’s important

that the UI you present is easy to use. Don’t force users to interpret and relearn your

application every time they load it. Using it should be simple, easy, and obvious

— particularly given the limited screen space and distracting user environment.”[2]

Responsive

“Responsiveness is one of the most important design considerations on a mobile

device. You’ve no doubt experienced the frustration of a “frozen” piece of software;

the multifunction nature of a mobile makes it even more annoying. With possible

delays due to slow and unreliable data connections, it’s important that your

application use worker threads and background services to keep your activities

responsive and, more importantly, stop them from preventing other applications

from responding in a timely manner.”[2]

3 Application Design

Some name changes from previous documents:

 Edge Trimming now has been changed to Barcode Detect(see class

BarcodeDetector)

3.1 Graphic User Interface

3.1.1 Capture UI:

This UI contains the grey box and all stuff inside the grey box. The grey box(actually it
will be semi-transparent so that it’s able to display captures) is where to display all

camera captures. While the black box area is where effective capture taking place. It

is supposed to be the only area that the CaptureActivity captures and transfers to

other classes. The red line helps users with positioning barcode parallel with camera

x-axis(the horizontal axis).The idea(the red horizontal line) comes from a similar
application on iPhone, whose presentation was put on YouTube.com as a video

fragment.[3]

The point of this red line is to ensure that as less work as it could give to the

application and it really helps in improving process speed (even more effective than a

better algorithm does).

I individually think it’s more than a kind of auxiliary locator on that iPhone

application. It turns green when a barcode is recognized and it has such functions like

indicating effective barcode edge and the recognize level. But even without these

functions and just a simple auxiliary locator, it will help a lot in improving speed.

Figure 1: Capture UI

3.1.2 Result and Connect to Web server UI

In this UI, recognized barcodes were displayed(string “1234567890” in the picture).

While it’s also the “connect to web server” UI. User name and password are required
to connect to and get details from web server, or a failed connection happens. The

reason of requiring user name and password is, only illegal college staff members are

able to access this very serious information of students’ database.

Figure 2: Result and Connect Web server UI

3.1.3 Details display UI

Details of student will be displayed in this (or similar) way.

Figure 3: Details display UI

3.1.4 Menu

When pressing “Menu” button on the phone, an option menu will provide.

There will be some components in the menu:

 Setting

Set general options like warning tone.
 History back view

View the previous recognized barcodes

 Help

Give some guidelines to user

 About
Some version information

3.2 Use Case Diagram & Use Cases

Figure 4: Use case diagram

3.2.1 Use Case 1

Use Case: Scans barcode

Actors: User

Description: User runs the Mobile Barcode Recognition program on the Android

mobile, scans the barcode area of student ID card. The program takes charge of the

scanned images, analysis and decodes the image of barcode. And when worked out,
it displays the result onto the screen. User gets the result of decoded barcode info

and stops scanning.

Main Success Scenario:

1. User runs Mobile Barcode Recognition System and scans barcode area.

2. System analysis the image and work out it

3. System displays the result onto the screen.

Alternatives:

1.1 If the barcode image cannot be recognized by System, User needs to

re-scan the barcode area.

3.2.2 Use Case 2

Use Case: Transfers result to Web Server

Actors: User, Web Server

Description: User presses transfer button to transfer decoded barcode info to the

Server via wireless network. User is asked for login name and password to log in.

User inputs his valid login name and password and logs in to the Server. After a

success login, System transfers to barcode info to Server.

Main Success Scenario:

1. User inputs login name and password

2. User presses get detail button (on the screen)
3. System connects to Web Server with username and password

4. System transfers result to Web Server

Alternatives:

 3.1 If an invalid login name or password has been input, User has up to 3

times to retry it or the Web Server will ban this transferring.

3.2.3 Use Case 3

Use Case: Transfers details to Mobile

Actor: Web Server

Description: Web Server looks up Database for corresponding details of the

decoded barcode info of the student card holder. When working out the

corresponding details, Web Server transfers it to Mobile Barcode Recognition System

on the request mobile.

Main Success Scenario:

1. Web Server works out the corresponding details of the barcode image

info

2. Web Server transfers the details to Mobile Barcode Recognition System

3.2.4 Use Case 4

Use Case: Displays details

Actor: User

Description: When getting the details, System displays it onto the screen.

Main Success Scenario:

1. System displays the details onto the screen

3.3 Domain Model

Figure 5: Domain model

CaptureActivity

This is the one which the main function(onCreate()) appears. The core functions are

described as below:

CaptureActivityHandler

This class is designed mainly to help CaptureActivity handle messaging. The

CaptureActivityHandler schedules messages to be executed as some point in the

future and to enqueue an action to be performed on a different thread. [4]

Message may be used as a parameter for states switching.

CameraManager

The central work of this CameraManager class is managing camera service.

BarcodeDetector

Once images were captured, barcode area needs to be detected. This class is

designed to detect the area which barcode locates. It actually is edge trimming of

Digital Signal Processor in previous document(Specification Manual). Why separate it

from Digital Signal Processor and make it an individual class? Because if not, there

will be so many works left for barcode converter and processor. The speed will be

slow down and it costs more resource to complete the same amount of work. It

doesn’t follow the theory of mobile software design.

BarcodeProcessor

It includes all image processing and output the processed image.

BarcodeSplitter
Usage of this class is to split processed barcodes into barcode blocks. So that Decoder

is able to decode them.

BarcodeDecoder

This class charges barcode decoding.

Result

The result from BarcodeDecoder stores in objects of class Result.

Client

This class is used to connect to web server and transferring data between local

application and web server.

3.4 System Sequence Diagram

3.4.1 SSD for Scans barcode(Use case 1)

Figure 6: System Sequence Diagram – Use case 1

3.4.2 SSD for Transfers result to Web Server(Use case 2)

Figure 7: System Sequence Diagram – Use case 2

3.4.3 SSD for Transfers details to Mobile(Use case 3)

Figure 8: System Sequence Diagram – Use case 3

3.4.4 SSD for Displays details(Use case 4)

Figure 9: System Sequence Diagram – Use case 4

3.5 Class Diagram & Classes

Figure 10: Class Diagram

3.5.1 CaptureActivity

Main functions:

 Built UIs

 Initialize camera, camera manager and handlers
 Add event listeners

 Deal surface event and views

3.5.2 CaptureActivityHandler

Main functions:

 Handle messages between classes

 Restart preview when needed

3.5.3 CameraManager

Main functions:

 All camera driver dealings

 Camera preview start and stop

 Auto focus appending

 Set camera parameters and get screen resolution.

3.5.4 BarcodeDetector

Main functions:

 detect(rawImage)

 detect the barcode area and return barcodeimage: Bitmap

 getDetectedImage()

 return barcodeImage(detected)

3.5.5 BarcodeProcessor

Main functions:

 grayScaling()

 gray-scale the image

 medianFilter()

 do median filter

 Thresholding()

 do thresholding

 imageGridding()

 grid images

 getProcessedBarcode()

 a function for external class getting processed barcode

3.5.6 BarcodeSplitter

Main functions:

 parseToByte(barcodeImage)
 parse Bitmap barcodeImage to byte[] format

 split(rawBarcode)

 split raw barcodes, return byte[][] barcodeBlocks

 getSplitBarcode()

 return barcodeBlocks

3.5.7 BarcodeDecoder

Main functions:

 decode(splitBarcode)

 decode the splitted barcode

 parseToASCII()

 parse the decoded barcode to ASCII format for further use.

3.5.8 Result

Main functions:

 Result(result)

 use to build object of Result
 getResult()

 a function for external class getting result.

3.5.9 Client

Main functions:

 Client (url,port,username,password)

 build objects of Client

 connectServer(result)

 connect and transfer result to web server

3.6 Interactions of Main Use Cases

Use case 1 “Scans barcode” is the most core use case among all use cases. In here

below it will be detailed. The second scenario in Use case 1 contains almost all works

that the application does. Here a detailed description is provided by using interaction
diagram.

Additionally, use case 3 and use case 4 are less important and really simple, so no

need to be detailed here.

3.6.1 Use Case 1: Scans barcode

Figure 11: Hierarchy of Use Case 1

Use Case 1:
Scans Barcode

Run & Scans
barcode

Analysis barcode

Image capture &
barcode area

detect

Image processing

Barcode
decoding

Display result

Contract 1: Run & Scans barcode (Omitted)

Contract 2: analysis barcode

 CO1: Image capture and barcode area detect

Figure 12: Barcode capture & detect

 CO2: Image processing

Figure 13: Image processing

Contract 3: Display result (Omitted)

 CO3: Barcode decoding

Figure 14: Barcode decoding

Contract 3: Display result (Omitted)

3.6.2 Use Case 2: Transfers result to Server

Contract 1: Input username & password (Omitted)

Contract 2: Connect to Server

Figure 15: Connect to server

4 Web Server Design

4.1 Dummy Database Table

Field Data Type

StudentID Varchar(10)

Surname Varchar(20)

Firstname Varchar(20)

Gender Varchar(6)

HomeAddress Varchar(50)

DateOfBirth Date

Tel.No. Varchar(20)

MobileNo. Varchar(20)

Email Varchar(30)

Course Varchar(30)

CourseCode Varchar(10)

EmploymentRecord Varchar(50)

Table 1: student’s database structure

4.2 Web-based Database Manager

A web based database manager(management system) will be built in order to

manage dummy student’s database.

5. Reference

1. “Professional Android Application Development”, ISBN: 0470344717, Reto Meier,

pp29

2. “Professional Android Application Development”, ISBN: 0470344717, Reto Meier,
pp34

3. “iPhone live barcode scanner by Vision Smarts”, benoit872(14-Sep-2009),

Web: http://www.youtube.com/watch?v=jNDu0Rb0vRY&NR=1

4. “Android SDK API/android.os.Handler/Class Overview”, Android Developers,

Google.com,

Web: http://developer.android.com/intl/zh-CN/reference/android/os/Handler.html

